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 23.1 Introduction to the Task 

 Although Java supports classes, inheritance, relations, and other structures 
used in knowledge representation, we should not think of it as a 
representation language in itself, but as a general purpose programming 
language. In AI applications, Java is more commonly used to implement 
interpreters for higher-level representations such as logic, frames, semantic 
networks, or state-space search. Generally speaking, representing the 
elements of a problem domain directly in Java classes and methods is only 
feasible for well-defined, relatively simple problems. The complex, ill-
formed problems that artificial intelligence typically confronts require 
higher-level representation and inference languages for their solution.  

The difference between AI representation languages and Java is a matter of 
semantics. As a general programming language, Java grounds object-
oriented principles in the practical virtual machine architecture – the 
abstract architecture at the root of Java’s platform independence – rather 
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than in mathematical systems or knowledge representation theories. 
Although Java draws on ideas from knowledge representation, such as class 
inheritance, its underlying semantics is procedural, defining loops, 
branches, variable scoping, memory addresses, and other machine 
constructs. This contrasts with higher-level knowledge representation 
languages, which draw their semantics from mathematical (formal logic or 
the lambda calculus), psychological (frames, semantic networks), or neural 
(genetic and connectionist network) theories of symbols, reference, and 
reasoning. The power of higher-level representation languages is in 
addressing the specific problems of reasoning about complex domains. 
This also simplifies the verification and validation of code, since a theory-
based implementation can support code integrity better than the 
combination of machine semantics and often ill-defined user requirements. 

Meta-linguistic abstraction is the technique of using one language to implement 
an interpreter for another language whose structure better fits a given class 
of problems. The term, meta-linguistic, refers to the use of a language’s 
constructs to represent the elements of the target language, rather than 
elements of the final problem domain, as seen in Figure 23.1. We can think 
of meta-linguistic abstraction as a series of mappings, the arrows in Figure 
23.1. The elements of a representation language, in this case, predicate 
calculus, are mapped into Java classes, and the entities in our problem 
domain are mapped into the representation language. If done carefully, this 
simplifies both mappings and their implementation – indeed, one of the 
benefits of this approach is that the theoretical basis of the representation 
language serves as a well-defined, mathematically grounded basis for the 
implementation. In turn, this simplifies both the implementation of the 
representation language, and the development of problem solvers.  

 

 
Figure 23.1. Creating an interpreter in Java to represent predicate 

calculus expressions, which, capture the semantics of a problem domain. 

The search engines of Chapter 22 hinted at this technique through their 
use of solver and state classes to describe general search elements rather 
than defining classes for a particular problem, e.g, farmers, wolves, goats, 
and cabbages. Chapters 23, 24 and 25 provide a more sophisticated 
example of meta-linguistic abstraction, using Java to build an inference 
engine for first-order predicate calculus. 

Implementing a logic-based reasoner in an object-oriented language like 
Java offers an interesting challenge, largely because the predicate calculus’s 
“flat” declarative semantics is so different from that of Java. In the 
predicate calculus every predicate is a statement that is either true or false 
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for the domain of discourse; there is no hierarchy within predicate 
relationships, nor is there inheritance of predicates, variables, or truth-
values across predicate expressions. In addition, the scope of variables is 
limited to a single predicate. What predicate calculus gives us in turn is 
representational generality and theoretically supported algorithms for 
logical inference and variable binding through unification. 

In building a predicate calculus problem solver, we begin with simple 
predicate calculus expressions, and then implement a unification algorithm 
that determines the variable substitutions that make two expressions 
equivalent (Luger 2009, Section 2.3.3).  

Chapter 24 addresses the representation of more complex logical 
expressions (and, or, not and implies), and then uses the unification 
algorithm as the basis of a logic problem-solver that searches an and/or 
graph of logical inferences. This problem solver then implements a depth-
first search with backtracking, and constructs a proof tree for each solution 
found. This can be seen as building a Prolog interpreter in Java. 

23.2 A Review of the Predicate Calculus and Unification 

 The predicate calculus is, first of all, a formal language: it is made up of 
tokens and a grammar for creating predicate names, variables, and 
constants. Chapter 2 of Luger (2009) describes predicate calculus in detail, 
but we offer a brief summary in this section. 

The atomic unit of meaning in the predicate calculus is the predicate sentence 
or expression. A simple predicate expression, or simple sentence, consists of 
a predicate name, such as likes or friends in the following examples, 
followed by zero or more arguments. The arguments of predicates can be 
atoms (represented, by convention, as symbols beginning with a lower case 
letter), variables (symbols beginning with an upper case letter), or functions 
(in the same syntactic form as predicates). A function may itself have zero 
or more arguments, expressions separated by commas and enclosed by 
parentheses. A function is interpreted in the traditional manner, that is, by 
replacing it and its arguments, which are taken from its domain of 
definition, by the unique constant that is the function’s evaluation. For 
example, father_of(david) is evaluated to george, when george is 
the computed father of david. Although our interpreter allows functions 
in expressions and will match them as patterns, we do not support their 
interpretation. Examples of simple sentences include: 

likes(george,  kate). 

likes(kate, wine). 

likes(david, kate). 

likes(kate, father_of(david)). 
Predicate calculus also allows the construction of complex sentences using 
the operators, ∧ (and), ∨ (or), ¬ (not), and  (implies). For example,  

friends(X, Y)  likes(X, Z)  ∧ likes(Y, Z) 

can be interpreted as stating that X and Y are friends if there is some 
individual Z such that X and Y both have the likes relationship with Z. 
When using variables in logical expressions, there are various possibilities 
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for their interpretation. Predicate calculus uses variable quantification to 
specify the scope of meaning of the variables in a sentence. The above 
sentence is more properly written using the existential (∃) and 
universal (∀) quantifiers: 

∀ X, Y (friends(X, Y)   

 ∃ Z (likes(X, Z)  ∧ likes(Y, Z))) 

This can be read: “for all X and Y, X and Y are friends if there exists a Z 
such that X likes Z and Y likes Z.”  

Horn Clauses 
and Unification 

In developing an inference engine for predicate calculus, we will follow 
Prolog conventions and restrict ourselves to a subset of logical expressions 
called Horn Clause Logic. Although their theoretical definition is more 
complex, for our purposes, we can think of a Horn clause as an 
implication, or rule, with only a single predicate on the left hand side of the 
implication, .  The right hand side, or “body” of the clause can be empty, 
a simple predicate, or any syntactically well-formed expression made up of 
simple predicates.  Horn clauses may consist of the body only; these are 
called goal clauses. Examples in propositional form include: 

p  q ∧ r ∧ s 

p  

q ∧ r ∧ s 

Following Prolog conventions, we extend the definition to allow ∨ 
(or), and ¬ (not) in the body of the Horn clause. In order to accommodate 
Java syntax, we vary these syntactic conventions in ways that will be 
evident over the next few chapters. 

The power of Horn clauses is in their simplification of logical reasoning. 
As we will see in the next chapter, restricting the head of implications to a 
single predicate simplifies the development of a backward chaining search 
engine. To answer the query of whether two people X and Y can be found 
who are friends, a search engine must determine if there are any variable 
substitutions for X, Y, and Z that satisfy the likes(X, Z) and 
likes(Y, Z) relationships. In this case, the substitutions george/X, 
david/Y, and kate/Z lead to the conclusion: friends(george, 
david). Unification is the algorithm for matching predicate calculus 
expressions and managing the variable substitutions generally required for 
such matches. Unification, combined with the use of search to try all 
possible matches, form the heart of a logic problem solver.  

Logic-based reasoning requires determining the equivalence of two 
expressions. For example, consider the reasoning schema, modus ponens: 

Given: q(X)  p(X) and p(george) 

Infer: q(george) 

We can read this as “if p of X implies q of X, and p(george) are 
both true, then we infer that q(george) is true as well.” This inference 
is a result of the equivalence of the fact “p(george)” and the premise 
“p(X)” in the implication. What makes this difficult for the predicate 
calculus is the more complex structure of sentences, and, more 
importantly, the handling of variables. In the example above, the sentence 
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likes(X, Z)  ∧ likes(Y, Z) 

matched the sentences likes(george, kate) and likes(david, 
kate) under the variable bindings george/X, david/Y and kate/Z. 
Note that, although the variable Z appears in two places in the sentence, it 
can only be bound once: in this case, to kate. In another example, the 
expression likes(X, X) could not match the sentence since X can only 
be bound to one constant. The algorithm for determining the bindings 
under which two predicate expressions match is called unification. 

The unification algorithm determines a minimal set of variable bindings 
under which two sentences are equivalent. This minimal set of bindings is 
called the unifier. It maintains these bindings in a substitution set, a list of 
variables paired with the expressions (constants, functions or other 
variables) to which they are bound. It also insures consistency of these 
bindings throughout their scope. It is also important to recognize that in 
the above example, where X is bound to george, it is possible for the 
variable X to appear in different predicates with different scopes and 
bindings. Unification must manage these different contexts as well. 

Luger (2009, Chapter 2) defines the unification algorithm as returning a 
substitution set if two expressions unify. The algorithm treats the 
expressions as lists of component expressions, a technique we will use in 
our own implementation: 

function unify(E1, E2) 

 begin 

  case 

   both E1 and E2 are constants or empty list: 

    if E1 = E2 then  

     return the empty substitution set 

    else return FAIL; 

   E1 is a variable:  

    if E1 is bound then 

     return unify(binding of E1, E2); 

    if E1 occurs in E2 then return FAIL; 

    return the substitution set {E1/E2}; 

    E2 is a variable:  

    if E2 is bound then  

     return unify(binding of E2, E1); 

    if E2 occurs in E1 then return FAIL 

    else return the substitution set {E2/E1}; 

   either E1 or E2 are different lengths:  

    return FAIL; 

   otherwise: 

    HE1 = first element of E1; 

    HE2 = first element of E2; 

    S1 = unify(E1, E2); 

    if S1 = FAIL then return Fail; 
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    TE1 = apply S1 to the tail of E1;  

    TE2 = apply S1 to the tail of E2; 

    S2 = unify (TE1, TE2); 

    if S2 = FAIL then return FAIL 

    else return the composition of S1 and S2; 

Although the algorithm is straightforward, a few aspects of it are worth 
noting. This is a recursive algorithm, and follows the pattern of head/tail 
recursion already discussed for Lisp and Prolog. We will retain a recursive 
approach in the Java implementation, although we will adapt it to an 
object-oriented idiom. Variables may bind to other variables; in this case, if 
either of the variables becomes bound to a constant or function 
expression, then both will share this binding. Finally, note that before 
binding a variable to an expression, the algorithm first checks if the 
variable is in the expression. This is called the occurs check, and it is necessary 
because, if a variable binds to an expression that contains it, replacing all 
occurrences of the variable with the expression will result in an infinite 
structure. We will omit the occurs check in our implementation, both for 
efficiency (as with Prolog) and to simplify the discussion. We do, however, 
leave its implementation as an exercise. 

23.3 Building a Predicate Calculus Problem Solver in Java 

Representing 
Basic 

Predicates 

As with any object-oriented implementation, we began with representation, 
defining the elements of the predicate calculus as Java classes. In the 
present chapter, we define the classes Constant, Variable, and 
SimpleSentence. In Chapter 24 we define the classes And, and Rule 
(or Implies). We will leave the definition of Or and Not as an exercise. 

We organize Constant, Variable, and SimpleSentence into a 
hierarchy, with the interface PCExpression as its root. As we develop 
the algorithm, this interface will come to define signatures for methods 
shared across all predicate calculus expressions.  

public interface PCExpression {} 
We also create a child interface, called Unifiable, that defines the 
signature for the unify(. . .) method, which is the focus of this 
chapter. For now, we leave the arguments to unify unspecified. 

public interface Unifiable extends PCExpression  

 { public boolean unify(. . .); }   

The reason for introducing the Unifiable interface will become evident 
as the discussion moves into Chapter 24. 

Based on these interfaces, we define the classes shown in the hierarchy of 
Figure 23.2. 
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Figure 23.2. The class hierarchy for PCExpression. 

Constant, Variable and SimpleSentence are all subclasses of 
Unifiable. Each instance of these classes will have a one-to-one 
relationship to its corresponding expression.  This simplifies testing if 
constants or variables are the same: they are the same if and only if they are 
the same Java object. We can test this using the “==” operator. A 
SimpleSentence is an assembly of instances of Unifiable. This 
recursive structure allows sentences such as: 

likes(kate, wine). 

likes(david, X). 

likes(kate, father_of(david)) 

Note that we do not distinguish between predicate expressions and 
functions in this implementation. This works for our implementation since 
we are not evaluating functions, and the syntax of predicate expressions 
and functions is the same. Introducing evaluable functions into this model 
is left as an exercise. Under this approach, an initial implementation of 
Constant is straightforward: 

public class Constant implements Unifiable  

{     

 private String printName = null;     

 private static int nextId = 1;    

 private int id;  

 public Constant()  

 {  

  this.id = nextId++;  

 } 

 public Constant(String printName)  

 { 

  this(); 
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  this. printName= printName; 

 }     

 public String toString()  

 { 

  if (printName!= null) 

   return printName; 

  return "constant_" + id;     

 } 

                 //unify and other functions to be defined shortly. 

} 

This definition includes a printName member variable, which we will 
use to display constants like george or kate in our earlier example. This 
practice of distinguishing the display name of an object from its internal 
representation is a common object-oriented practice that allows us to 
optimize internal representation while maintaining a familiar “face” for 
printing objects. Variable has a nearly identical definition: 

public class Variable implements Unifiable  

{ 

 private String printName = null; 

 private static int nextId = 1; 

 private int id; 

 public Variable()  

 { 

  this.id = nextId++; 

 } 

 public Variable(String printName)  

 { 

  this(); 

  this.printName = printName; 

 }    

 public String toString()  

 { 

  if (printName != null) 

   return printName + "_" + id; 

  return "V" + id; 

 } 

                 //unify and other functions to be defined shortly. 

} 

The id member variable in these classes serves several purposes. It can 
serve as an identifier for unnamed constants or variables. Although, 
generally speaking, unnamed constants and variables can be confusing, we 
include them for completeness and to be consistent with similar features in 
Prolog. A more important use of the id variable is in the Variable class. 



 Chapter 23 A Java Representation for the Predicate Calculus and Unification 313 

 

As mentioned earlier, the same variable name may be used in different 
sentences, where it is treated as different variables. By appending the id to 
the printName in the toString method, we enable the programmer 
to more easily distinguish variables in this case, simplifying tracing of 
program execution. 

Also note the introduction of the constructor Variable(Variable 
v). This pattern is called a copy constructor, and serves the same function as 
the clone method. We prefer this approach because the semantics of 
clone are problematic, with programmers frequently redefining it to 
reflect their own needs. Using a copy constructor emphasizes that the 
semantics of the copy are specific to the class. In the case of Variable, 
we define copying to use the same printName but a different id; this 
will be important for dealing with occurrences of the same variable in 
different contexts, as presented in Chapter 24. 

As we mentioned, for the portion of the definition displayed above, 
Constant and Variable are essentially the same, and this part of their 
definition could be placed in a common parent class. We have chosen not 
to do so, feeling that the functionality is so simple that a common parent 
definition would buy us too little in the way of maintainability to justify the 
added complexity of doing so. However, like many design decisions, this is 
a matter of taste. We encourage the reader to explore the trade-offs of this 
decision on her own. 

Finally, we define SimpleSentence as an array of type Unifiable: 
public class SimpleSentence implements Unifiable  

{ 

 private Unifiable[] terms; 

 public SimpleSentence(Constant predicateName,  
   Unifiable... args)  

 { 

  this.terms = new Unifiable[args.length + 1]; 

  terms[0] = predicateName; 

  System.arraycopy(args, 0, terms, 1,   
      args.length); 

 } 

 private SimpleSentence(Unifiable... args) 

 { 

  terms = args 

 } 

 public String toString()  

 { 

  String s = null; 

  for (Unifiable p : terms) 

   if (s == null) 

    s = p.toString(); 
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   else 

    s += " " + p; 

   if (s == null) 

   return "null";  

  return "(" + s + ")";     

 } 

 public int length() 

 { 

  return terms.length; 

 } 

  public Unifiable getTerm(int index) 

 { 

  return terms[index];      

 } 

                 //unify and other functions to be defined shortly. 

} 

Representing a simpleSentence as an array of Unifiable 
simplifies access to its elements using the length and getTerm 
methods. These will be important to our implementation of the unify 
method. Although first-order predicate calculus requires that the first term 
of a simple sentence be a constant, to gain the benefits of using an array of 
type Unifiable to represent simple sentences, we did not make this 
distinction internally. Instead, we enforce it in the constructor. This 
approach maintains the integrity of the Predicate Calculus implementation, 
while giving is the internal simplicity of representing a simple sentence as 
an array of items of type Unifiable. 

Defining 
unify(…) and 
Substitution 

Sets 

To complete this part of the implementation, we need to define the 
unify method. unify has the signature:  

public SubstitutionSet unify(Unifiable p, 
 SubstitutionSet s) 

A call to unify takes a Unifiable expression and a 
SubstitutionSet containing any bindings from the algorithm so far. 
For example, if exp1 and exp2 are both of type Unifiable, and s is 
an initial SubstitutionSet, we unify the expressions by: 

exp1.unify(exp2, s)  

or by: 
exp2.unify(exp1, s) 

Both calls are equivalent. If the unification succeeds, unify will return a 
new substitution set, adding additional variable bindings to those passed in 
the parameters. If it fails, unify will return null. In either case, the 
original SubstitutionSet will be unchanged. The class maintains 
variable bindings as a list of Variable/Unifiable pairs, using the 
HashMap collection type: 
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public class SubstitutionSet  

{ 

 private HashMap<Variable, Unifiable> bindings =  

  new HashMap<Variable, Unifiable>(); 

 public SubstitutionSet(){}  

 public SubstitutionSet(SubstitutionSet s) 

 {      this.bindings =  

   new HashMap<Variable,     

    Unifiable>(s.bindings);  

 }  

 public void clear() 

 { 

  bindings.clear(); 

 }  

 public void add(Variable v, Unifiable exp) 

 { 

  bindings.put(v, exp);  

 } 

 public Unifiable getBinding(Variable v) 

 { 

  return (Unifiable)bindings.get(v); 

 }  

 public boolean isBound(Variable v) 

 { 

  return bindings.get(v) != null;  

 }     

 public String toString()  

 { 

  return "Bindings:[" + bindings + "]";     

 } 

} 

This is a straightforward implementation that does little more than “wrap” 
the HashMap in the SubstitutionSet object (see the design 
discussion in section 23.3.1 for the reasons behind this approach). Finally, 
we will define unify for each class. Implementing it for Constant is 
straightforward and addresses two cases: if the expression to be matched is 
equal to the constant, unify returns a new substitution set; if the expression 
is a variable, it calls unify on that variable. 

public class Constant implements Unifiable  

{ 

 //constructors and other methods as defined above. 
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 public SubstitutionSet unify(Unifiable exp,  

           SubstitutionSet s) 

 {         

  if (this == exp) 

   return new SubstitutionSet(s); 

  if (exp instanceof Variable) 

   return exp.unify(this, s);   

  return null;  

 } 

} 

Defining unify for a variable is a bit more complicated, since it must 
manage bindings: 

public class Variable implements Unifiable  

{ 

 // constructors and other methods as defined above 

 public SubstitutionSet unify(Unifiable p,  
     SubstitutionSet s) 

 { 

  if (this == p) return s;         

  if(s.isBound(this)) 

   return s.getBinding(this).unify(p, s);         

  SubstitutionSet sNew = new SubstitutionSet(s);         

  sNew.add(this, p); 

  return sNew;     

 } 

} 

This definition checks three cases. The first is if the expressions are equal: 
anything matches itself. Second, it checks if the variable is bound in the 
substitution set s; if it is, it retrieves the binding, and calls unify on it. 
Finally, the variable is unbound and the algorithm adds the binding to a 
new substitution set and returns it. 

We define unify for SimpleSentence as unifying two lists by 
moving through them, unifying corresponding elements. If this succeeds, it 
returns the accumulated substitutions. 

public SubstitutionSet unify(Unifiable p,   
   SubstitutionSet s)  

{ 

 if (p instanceof SimpleSentence)  

 {             

  SimpleSentence s2 = (SimpleSentence) p; 

  if (this.length() != s2.length()) 

   return null; 

  SubstitutionSet sNew = new SubstitutionSet(s);             
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  for (int i = 0; i < this.length(); i++) 

  {             

   sNew = this.getTerm(i).unify(s2.getTerm(i), 
           sNew);             

   if(sNew == null) 

    return null; 

  }  

  return sNew;         

 } 

 if(p instanceof Variable) 

  return p.unify(this, s); 

 return null;  

} 

This method tests two cases. If the argument p is a simple sentence, it casts 
p to an instance of SimpleSentence: s2. As an efficiency measure, 
the method checks to make sure both simple sentences are the same 
length, since they cannot match otherwise. Then, the method iterates down 
the elements of each simple sentence, attempting to unify them recursively. 
If any pair of elements fails to unify the entire unification fails. The second 
case is if p is a Variable. If so, the method calls unify on p. 

Testing the 
unify Algorithm 

To simplify testing of the algorithm, we write one more method to replace 
any bound variable with its binding. We will define this method signature 
at the level of the interface PCExpression: 

public interface PCExpression  

{ 

 public PCExpression      
   replaceVariables(SubstitutionSet s); 

} 

Defining the method for a constant is straightforward:  
public class Constant implements Unifiable  

{ 

             //Use constructors and other methods as defined above. 

 public PCExpression  

  replaceVariables(SubstitutionSet s) 

 {        

  return this; 

 } 

} 

In the case of variables, the method must search the substitution set to find 
the binding of the variable. Since a variable may be bound to other 
variables, the method must search until it finds a constant binding or a 
final, unbound variable: 

public class Variable implements Unifiable  

{ 



318 Part IV: Programming in Java 

             //Use constructors and other methods as defined above. 

 public PCExpression replaceVariables( 

   SubstitutionSet s) 

 {    

  if(s.isBound(this)) 

   return 

    s.getBinding(this).replaceVariables(s); 
  else    

   return this; 

 } 

} 

Finally, a SimpleSentence replaces variables with bindings in all its 
terms, and then creates a new sentence from the results: 

public class SimpleSentence implements Unifiable  

{ 

             //Use constructors and other methods as defined above. 

 public PCExpression     

   replaceVariables(SubstitutionSet s) 

 {   

  Unifiable[] newTerms = new  

   Unifiable[terms.length]; 

  for(int i = 0; i < length(); i++) 

   newTerms[i] =  

    (Unifiable)terms[i].replaceVariables(s);   

  return new SimpleSentence(newTerms); 

} 

Using these definitions of our key objects, an example UnifyTester 
can create a list of expressions and try a series of goals against them: 

public class UnifyTester  

{  

 public static void main(String[] args)  

 { 

  Constant friend = new Constant("friend"), 

     bill = new Constant("bill"), 

     george = new Constant("george"), 

     kate = new Constant("kate"), 

     merry = new Constant("merry"); 

  Variable X = new Variable("X"),  

     Y = new Variable("Y");  

  Vector<Unifiable> expressions =  

    new Vector<Unifiable>();     

  expressions.add(new SimpleSentence(friend,  

    bill, george)); 
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  expressions.add(new SimpleSentence(friend,  

    bill, kate)); 

  expressions.add(new SimpleSentence(friend,  

    bill, merry)); 

  expressions.add(new SimpleSentence(friend,  

    george, bill)); 

  expressions.add(new SimpleSentence(friend,  

    george, kate)); 

  expressions.add(new SimpleSentence(friend,  

    kate, merry)); 

  //Test 1 

  Unifiable goal = new SimpleSentence(friend, X,  

    Y); 

  Iterator iter = expressions.iterator(); 

  SubstitutionSet s; 

  System.out.println("Goal = " + goal); 

  while(iter.hasNext()){ 

   Unifiable next = (Unifiable)iter.next(); 

   s = next.unify(goal, new SubstitutionSet()); 

   if(s != null) 

    System.out.println( 

      goal.replaceVariables(s)); 

   else 

    System.out.println("False");   

  } 

  //Test 2 

  goal = new SimpleSentence(friend, bill, Y); 

  iter = expressions.iterator(); 

  System.out.println("Goal = " + goal);  
  while(iter.hasNext()){ 

   Unifiable next = (Unifiable)iter.next(); 

   s = next.unify(goal, new SubstitutionSet());
   if(s != null)  

    System.out.println( 

     goal.replaceVariables(s)); 

   else 

    System.out.println("False");   

  }  

 } 

} 

UnifyTester creates a list of simple sentences, and tests if several 
goals bind with them. It produces the following output: 
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Goal = (friend X_1 Y_2) 

(friend bill george) 

(friend bill kate) 

(friend bill merry) 

(friend george bill) 

(friend george kate) 

(friend kate merry) 

Goal = (friend bill Y_2) 

(friend bill george) 

(friend bill kate) 

(friend bill merry) 

False 

False 

False 

We leave the creation of additional tests to the reader. 

23.4 Design Discussion 

 Although simple, the basic unify method raises a number of interesting 
design questions. This section addresses these in more detail.  

Why define the 
substitutionSet 

class? 

The SubstitutionSet class has a very simple definition that adds 
little to the HashMap class it uses. Why not use HashMap directly? This 
idea of creating specialized data structures around Java’s general collection 
classes gives us the ability to address problem specific questions while 
building on more general functionality. A particular example of this is in 
detecting problem specific errors. Although the SubstitutionSet 
class defined in this chapter works when used properly, it could be used in 
ways that might lead to subtle bugs. Specifically, consider the add() 
method:  

public void add(Variable v, Unifiable exp) 

{ 

 bindings.put(v, exp);  

} 

As defined, this method would allow a subtle bug: a programmer could add 
a binding for a variable that is already bound. Although our 
implementation makes sure the variable is not bound before adding a 
binding, a more robust implementation would prevent any such errors, 
throwing an exception if the variable is bound: 

public void add(Variable v, Unifiable exp) 

{ 

 if(isBound(v) 

  //Throw an appropriate exception. 

 else 

  bindings.put(v, exp);  

} 
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Finishing this method is left as an exercise. 
Why is unify a 

method of 
unifiable? 

An alternative approach to our implementation would make unify a 
method of SubstitutionSet. If we assume that exp1 and exp2 are 
Unifiable, and s is a SubstitutionSet, unifications would look 
like this: 

s.unify(exp1, exp2); 

This approach makes sense for a number of reasons. 
SubstitutionSet provides an essential context for unification. Also, 
it avoids the somewhat odd syntax of making one expression an argument 
to a method of another (exp1.unify(exp2, s)), even though they 
are equal arguments to what is intuitively a binary operator. Although 
harmless, many programmers find this asymmetry annoying. 

In preparing this chapter, we experimented with both approaches. Our 
reasons for choosing the approach we did is that adding the unify 
method to the SubstitutionSet made it more than a “unification-
friendly” data structure, giving it a more complex definition. In particular, 
it had to test the types of its arguments, an action our approach avoids. A 
valuable design guideline is to attempt to make all objects have simple, 
well-defined behaviors as this can reduce the impact of future changes in 
the design. Exercise 4 asks the reader to implement and evaluate both 
approaches. 

Why introduce 
the interface 

definition: 
unifiable? 

Early in the chapter, we introduced the Unifiable interface to define 
the unify method signature, rather than making unify a method of 
PCExpression. This raises a design question, since, as defined in 
(Luger 2009), the unification algorithm can apply to all Predicate Calculus 
expressions (including expressions containing implies, and, or and not).  

The short answer to this question is that we could have placed the 
unification functionality in PCExpression. However, as we move into 
expressions containing operators, we encounter the added problems of 
search, particularly for implications, which can be satisfied in different 
ways. We felt it better to separate simple unification (this chapter) from the 
problems of search we present in Chapter 24) for several reasons. 

First, since unifying two expressions with operators such as and 
decomposes into unifying their component terms, we can isolate the 
handling of variable bindings to simple sentences. 

Second, our intuitions suggest that adding search to our problem solver 
naturally creates a new context for our design. Separating search from 
unification simplifies potential problems of adding specialized search 
capabilities to our problem solver. 

Finally, our goal in a logic problem solver is not only to find a set of 
variable bindings that satisfy a goal, but also to construct a trace of the 
solution steps. This trace, called a proof tree, is an important structure in 
expert systems reasoning, as presented in Chapter 25. For simplicity sake, 
we did not want to include atomic items, e.g., constants and variables, into 
the proof tree. As we will see in the next chapter, introducing the 
Unifiable interface helps with this. 
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23.5 Conclusion: Mapping Logic into Objects 

 In the introduction to this chapter, we argued for the benefits of meta-
linguistic abstraction as an approach to developing large-scale problem 
solvers, knowledge systems, learning programs, and other systems common 
to Artificial Intelligence. There are a number of advantages of taking this 
approach including: 

Reuse. The most obvious benefit of meta-linguistic abstraction is in reuse 
of the high-level language. The logic reasoner we are constructing, like the 
Prolog language it mirrors, greatly simplifies solving a wide range of 
problems that involve logical reasoning about objects and relations in a 
domain. The Prolog chapters of this book illustrate the extent of logic’s 
applicability. By basing our designs on well-structured formalisms like 
logic, we gain a much more powerful foundation for code reuse than the 
ad-hoc approaches often used in software organizations, since logic has 
been designed to be a general representation language. 

Expressiveness. The expressiveness of any language involves two 
questions. What can we say in the language? What can we say easily? 
Formal language theories have traditionally addressed the first question, as 
reflected in the Chomsky hierarchy of formal languages (Luger 2009, 
Section 15.2), which defines a hierarchy of increasingly powerful languages 
going from regular expressions to Turing complete languages like Java, 
Lisp, or Prolog. Predicate calculus, when coupled with the appropriate 
interpreter is a complete language, although there are benefits to less 
expressive languages. For example, regular expressions are the basis of 
many powerful string-processing languages. The second question, what can 
we say easily, is probably of more practical importance to Artificial 
Intelligence. Knowledge representation research has given us a large 
number of languages, each with their own strengths. Logic has unique 
power as a model of sound reasoning, and a well-defined semantics. 
Semantic networks and Frames give us a psychologically plausible model of 
memory organization. Semantic networks also support reasoning about 
relationships in complex linguistic or conceptual spaces. Genetic 
algorithms implement a powerful heuristic for searching the intractable 
spaces found in learning and similar problems by unleashing large 
populations of simple, hill-climbing searches throughout the space. 
Although knowledge representation research is not in its infancy, it is still a 
young field that will continue to provide formalisms for the design of 
meta-languages. 

Support for Design. Although languages like logic are very different from 
an object-oriented language like Java, object-orientation is surprisingly well 
suited to building interpreters for meta-linguistic abstraction. The reason 
for this is that, as formal languages, representation schemes have clearly 
defined objects and relations that support the standard object-oriented 
design process of mapping domain objects, relations, and behaviors into 
Java classes and methods. Although, as discussed above, design still 
involves hard choices with no easy answer, objects provide a strong 
framework for design. 
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Semantics and Interpretation. In this chapter, we have focused on the 
representation of predicate calculus expressions. The other aspect of meta-
linguistic abstraction is semantic: how are these expressions interpreted in 
problem solving. Because many knowledge representation languages, when 
properly designed, have their foundations in formal mathematics, they 
offer a clear basis for implementing program behavior. In the example of 
predicate calculus, this foundation is in logic reasoning using inference 
rules like modus ponens and resolution. These provide a clear blueprint for 
implementing program behavior. As was illustrated by our approach to 
unification in this chapter, and logic-based reasoning in the next, meta-
linguistic abstraction provides a much sounder basis for building quality 
software in complex domains. 

 Exercises 

 1. In the friends example of Section 23.1, check whether there are any 
other situations where friends(X, Y) is true. How many solutions to this 
query are there? How might you prevent someone from being friends of 
themselves? 

2. Review the recursive list-based unification algorithm in Luger (2009, 
Section 2.3.3). Run that algorithm on the predicate pairs of 
friends(george, X, Y), friends(X, fred, Z), and friends(Y, bill, 
tuesday). Which pairs unify, which fail and why? The unification 
algorithm in this chapter is based on the Luger (2009, Section 2.3.3) 
algorithm without the backtrack component and occurs check. 

3. Section 23.3.1 suggested augmenting the SubstitutionSet data 
structure with problem-specific error detection. Do so for the class 
definition, beginning with the example started in that section. Should we 
define our own exception classes, or can we use built-in exceptions? What 
other error conditions could we present? 

4. Rewrite the problem solver to make unify a method of 
SubstitutionSet, as discussed in 23.3.2. Compare this approach with 
the chapter’s approach for ease of understanding, ease of testing, 
maintainability, and robustness. 

5. As defined, the unify method creates a new instance of 
SubstitutionSet each time it succeeds. Because object creation is a 
relatively expensive operation in Java, this can introduce inefficiencies into 
the code. Our reasons for taking this approach include helping the 
programmer avoid inadvertent changes to the SubstitutionSet once 
we introduce unification into the complex search structures developed in 
the next chapter. What optimizations could reduce this overhead, while 
maintaining control over the SubstutionSet? 

6. Add a class Function to define evaluable functions to this model. A 
reasonable approach would be for the class Function to define a default 
evaluation method that returns the function as a pattern to be unified. 
Subclasses of Function can perform actual evaluations of interest. Test 
your implementation using functions such as simple arithmetic operations, 
or an equals method that returns true or false. 
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7. Representing predicate calculus expressions as Java objects simplifies our 
implementation, but makes it hard to write the expressions. Write a “front 
end” to the problem solver that allows a user to enter logical expressions in 
a friendlier format. Approaches could include a Lisp or Prolog like format 
or, what is more in the spirit of Java, an XML syntax.  

 


